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The concept of compatibility of steady nonequilibrium systems, anal-
ogous. to the equilibrium property in thermostatics, is examined,
Compatibility parameters, which play the part of generalized inten-
sive parameters for nonequilibrium steady systems, are introduced.

In thermostatics, a central role is played by the
concept of the equilibrium of systems or the individual
parts of a certain system.

For any form of equilibrium, the corresponding in-
tensive quantities characterizing the systems (tem-
peratures, pressures, chemical potentials, etc. ) must
be equal.

A necessary condition of any form of equilibrium
is thermal equilibrium determined by equality of tem-
peratures. A basic property of equilibrium is its tran-
sitivity.

In the theory of steady nonequilibrium systems, we
encounter the concept of compatibility, which serves
as a natural extension of the concept of equilibrium to
the nonequilibrium region {1]. The concept of compat-
ibility expresses the following property of steady sys-
tems: is there exists a means of bringing steady sys-
tems into contact and thereby creating the possibility of
an exchange of certain extensive quantities without dis-
turbing the macroscopic state, then such systems are
called compatible. Like equilibrium, the compatibility
property possesses transitivity: if there exists a means
of creating interaction between systems A and B without
disturbing their macroscopic state, and if such a prop-
erty is also possessed by systems B and C, then sys-
tems A and C are also compatible. With reference to
the following example, we show that the compatibility
property of steady systems necessarily requires equal-
ity of the corresponding thermodynamic forces or, in
other words [2], equality of the Lagrangian multipliers
Xj introduced to take into account the additional con-
ditions that the systems must satisfy. From the exis-
tence of intensive compatibility parameters, there di-
rectly follows the transitivity propérty of these param-
eters, which are physically measurable, macroscopic
characteristics of the steady systems. Since, in the
steady systems investigated, standard parameters are
employed, one can judge the equality of the correspond-
ing compatibility parameters on the basis of the prin-
ciple of macroscopic invariance (with respect to com-
patibility).

Transition probabilities of a steady system. In |2, 3],
the author and Karpov proposed a postulate for the
statistical description of a steady nonequilibrium sys-
tem according to which the behavior of the steady sys-
tem essentially depends not only on the distribution

function {pif but also on the probabilities {pjj} of
transition from state to state in unit time. An algo-
rithm for determining the transition probabilities on
the basis of known information about the system was
also proposed. According to this algorithm, the tran-
sition probability matrix satisfying this information is
found from an equation of the type

dH + EXudFa:O, (1)
a

where the entropy of evolution
= 2 2 Ppip:; 108 p;;
i g

is related to the probability of the Markov chain tra-
jectory in the discrete space of states {i} by the rela-
tion
P = exp (—sH), 2)

where s is the length of the trajectory (number of
transitions from state to state), and the number of
trajectories with probability P is equal to exp (sH). In
Eq. (1), F; are the generalized thermodynamic fluxes,
and X; are the generalized thermodynamic forces (La-
grangian multipliers).

When the information known about the system is ex-
hausted by a knowledge of the two generalized fluxes:

average energy flux Fi=E (X;=)) (3)
and average heat flux Fo=0Q (Xo=u), (4)

in the quasi-equilibrium approximation for a steady
system interacting with two external factors (source
and sink) that maintain the system in the nonequilib-
rium state, the probabilities of states p; with energy
¢j and the probabilities of transition between states
pj; take the following form:

p; = cexp (—" }\'81‘): (5)
pi; = cexp (— he), (6)
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where aij and bij are the partial transition probabili-
ties of the system with respect to each of the external
factors taken separately, and c is the normalization
constant. In the quasi-equilibrium approximation, the
entropy of evolution H differs from the ordinary en-
tropy S by a small quantity of the second order, i.e.,
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H=S8+pQ (9)

Having obtained these necessary relations, we can
make a closer examination of the mechanism of energy
transport in the steady system. Let the system be in
contact with two regions of constant temperature T,
and Tz. If T, = Tz,

Gj= by = “‘;‘ Pij-

If the temperatures are different, some probabilities
decrease, while others increase, and the system will
interact with each region differently. To be specific,
let u > 0. (The relation between p and the temperatures
T, and T,is discussed below. )} Then, from (7) and (8),
the probabilities ajj increase for &; < &; and decrease
for €] >gq, i.e., on the average, upon interaction
with the first region, transitions to lower levels are
more frequent, or on the average, the first region
receives more energy than it gives up. Similarly, the
probabilities byj increase for & > &j and decrease for
gj <&, 80 that, on the average, the second region
gives up energy. The probabilities 4jj and bjj are some-
how balanced, and, in fact, from (5), (7), and (8), it
is clear that

P:ai; = Pibi» (10)
which shows that the probability of a transition of the
system in some direction under the influence of one
factor is equal to the probability of a transition in the
opposite direction under the influence of the other.

The detailed balance for the total conditional prob-
abilities
’ PiPii = PiPji- (11)
also holds, but this is a direct consequence of the
quasi-equilibrium nature of the approximation (5), (6).

However, even a small deviation from equilibrium dis-.

turbs the transition balance for interaction with either
of the external factors individually, i.e.,

Pit; # Pty Pibsj 7= Pibyss (12)

which, in the last analysis, is also the cause of heat
transport.

The detailed balance principle {4] asserts that to
each forward process there corresponds a reverse
process that follows the same path, and, in a state of
thermodynamic equilibrium, the rates of the forward
and reverse processes are equal. Hence, it follows
that the steady state coincides with the state of ther-
modynamic equilibrium only if the forward and re-
verse processes follow the same path. Inequalities
(12) explicitly assert that the forward and reverse pro-
cesses follow different paths. Moreover, the detailed
steady state expressed by the balance equations (10)
establishes the method of maintaining the energy steady
state of the system that is simplest for the simulta-
neous satisfaction of the energy balance between the
source and the gink.

We now turn to an examination of the concept of
compatibility.

If a vector flux is present in the systems, it is nec-
essary to consider {wo types of interactions, paral-
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lel and series. In the first case, there is,onthe aver-
age, no exchange between the systems, and the param-
eters of the flux type are additive. Then, despite the
presence of interaction, by virtue of compatibility,
the systems behave like independent systems, and the
number of trajectories of the combined system may
be assumed equal to the product of the numbers of
trajectories of the individual systems,

exp (sH) = exp (sH,) exp (sH,),

which implies the additivity of the entropies of evolu-
tion

H=H 4 H,. (12,)
Confining our attention, for simplicity, to the quasi-
equilibrium approximation (9) for systems with a heat
flux, we write the additivity conditions for the flux and
ordinary entropy:

Q = Ql + QZ!

S=8+S. (13)

Since in the approximation adopted, in accordance with
(9},
H=—pnQ+S, Hi=—mQ +S; Ha=—pa Qo+ S5, (14)

from (12'), (13), and (14) there immediately follows
the necessity that the compatibility parameters be
equal:
Mg == [y = W (15)

The fact that the interaction is sequential presup-
poses that the flux from one system passes through the
other. This situation arises if we imagine a certain
linear steady system divided into two subsystems at
right angles to the flux. As an example, we consider
a quasi-equilibrium system linked with two regions at
slightly different temperatures T; and T,.

Since, according to Kiein [5],

Pijexp (— &,/kT) = p;; exp (— ,/kT), (16)

in the case of a system interacting with two regions at
the constant temperatures T; and T, for the corre-
sponding transition probabilities a and b, we can write

a;;exp {—e,/kTy) = a;; exp (— &;/kTy), a7)
byjexp (—e/kTs) = by, exp (—&/kTy). (18)

Moreover, from (10)

Py = Pibsss (19)
pibis = Pt (20)
whence,
o _bu
q @ (21)

Dividing both sides of (17) by (18), term by term, we

obtain
g [ s, (=1 |-
b;; kT, kT,

=% €xp _‘Bj/ ('1—"“1—> 2 (22)
b T, T,



which, after using (21), gives

Y mew o) 2]
big

kT, T, (23)

However, it follows from (7) and (8) that, in the quasi-
equilibrium case in question, the conditions

1+ e, —;
” s (e;—¢))

= T ~explu(e; —&j)]
b — % - j (24)

a.:

are satisfied correct to terms proportional to ;42.

By equating (23) with (24), we immediately obtain
an expression for the quasi-equilibrium compatibility
parameter:

_Th—Ty
M= enT, (25)

or, adopting the local approach,

_AT
kT

where, by virtue of the quasi-equilibrium condition,
we have introduced the average temperature T = {T; +
+ Ty)/2 and AT = Ty — T =T — Ty. The physical sig-
nificance of this parameter is that the local compati-
bility of steady quasi-equilibrium systems with a heat
flux requires not only equality of the local tempera-
tures (requirement of classical thermodynamics) but
also equality of the temperature gradients at the in-
teraction points.

, (26)

Let us divide the system into two equal parts at
right angles to the flux. Hence, the energy levels in
the parts will be the same. Each subsystem is linked,
on the one hand, with a region of constant tempera-
ture and, on the other, with a compatible steady sys-
tem, which can in each case be replaced with a certain
region of constant temperature T, while in both cases,
by virtue of the transitivity of the compatibility prop-
erty, this region must possess the same temperature
T.

In fact, each subsystem plays the part of an ex—
ternal factor for the other, replacing the above-men-
tioned mutually compatible region at constant tem-
perature T. According to (8) and (26), the probability
of transition, under the influence of the region at T,
for the subsystem also linked with a region at T (Ty <
< T), is equal to

by =c exp € ;MkT) [1—— TZszTl (ei—ej)]- 27

On the other hand, according to (7) and (26), the prob-
ability of transition, under the influence of the same
region (T), for the subsystem also linked with the re-
gion at T, (T3 > T), is

. exp(—g;lkT) T—T,
a =c 21 [1+ i (&;—eyp) | . (28)

Since the transition probabilities defined by (27) and
(28) represent the interaction of identical systems with
the same region of constant temperature, they must

be equal:

a = bp. (29)
Hence, there immediately follows that
—T+Ty,=T—-T,
or
T = T+ T, (30)
.
and
AT
= = > 31
5] pre Uy (31)

i.e., the compatibility parameters for serially com-
patible systems are also equal.

In conclusion, it should be noted that, in accord-
ance with the above reasoning, when heat-conducting
systems with different values of the compatibility
parameter u = grad T/kT2 interact, even if the local
temperatures T are equal, there should be a macro-
scopically observable change in the state of the sys-
tems, i.e., changes associated with the flow of energy
due to the difference in temperature gradients should
take place in the local temperature distribution of the
systems. This effect can not be described by the clas-
sical heat conduction equation based on Fourier's law,
Since, in the given case, the temperature difference
is by definition equal to zero. On the other hand, from
kinetic considerations, it is clear that if energy ex-
change is possible between two systems having non-
identical distribution functions differing slightly from
the Maxwellian and the common parameter T, there
should be a flow of energy affecting the value of the
principal distribution parameter in both systems. In
the case of nonlinear heat conduction, this nonclas-
sical effect of a gradient-difference flow evidently
occurs and is effectively described by the tempera-
ture dependent thermal conductivity, but is difficult
to discriminate from the background of the heat flux
associated with the difference of temperatures.

NOTATION

His the entropy of evolution; Xj is the thermody~
namic force; Fj is the thermodynamic flux; s is the
length of the trajectory (number of steps); p; is the
probability of state i; pij is the conditional transition
probability; €; is the energy of state i; ajj, bij are the
partial transition probabilities; Sisthe entropy; uisthe
the compatibility parameter; ¢ is the normalization
constant.
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